From e5abd6a16d42fc0f42277919a2d0a2c28476788c Mon Sep 17 00:00:00 2001
From: "Arnold D. Robbins" To run it, do this: \ Details of HTTP come from:Hello, world
"
+ Len = length(Hello) + length(ORS)
+ print "HTTP/1.0 200 OK" |& HttpService
+ print "Content-Length: " Len ORS |& HttpService
+ print Hello |& HttpService
+ while ((HttpService |& getline) > 0)
+ continue;
+ close(HttpService)
+ }
+
+ Now, on the same machine, start your favorite browser and let it
+point to \
+ Do you prefer your date human or \
+ POSIXed?
" ORS ORS
+ TopFooter = ""
+ }
+
+ On the first run through the main loop, the default line terminators
+are set and the default home page is copied to the actual home page.
+Since this is the first run, 'GETARG["Method"]' is not initialized yet,
+hence the case selection over the method does nothing. Now that the
+home page is initialized, the server can start communicating to a client
+browser.
+
+ It does so by printing the HTTP header into the network connection
+('print ... |& HttpService'). This command blocks execution of the
+server script until a client connects. If this server script is
+compared with the primitive one we wrote before, you will notice two
+additional lines in the header. The first instructs the browser to
+close the connection after each request. The second tells the browser
+that it should never try to _remember_ earlier requests that had
+identical web addresses (no caching). Otherwise, it could happen that
+the browser retrieves the time of day in the previous example just once,
+and later it takes the web page from the cache, always displaying the
+same time of day although time advances each second.
+
+ Having supplied the initial home page to the browser with a valid
+document stored in the parameter 'Prompt', it closes the connection and
+waits for the next request. When the request comes, a log line is
+printed that allows us to see which request the server receives. The
+final step in the loop is to call the function 'CGI_setup()', which
+reads all the lines of the request (coming from the browser), processes
+them, and stores the transmitted parameters in the array 'PARAM'. The
+complete text of these application-independent functions can be found in
+*note A Simple CGI Library: CGI Lib. For now, we use a simplified
+version of 'CGI_setup()':
+
+ function CGI_setup( method, uri, version, i) {
+ delete GETARG; delete MENU; delete PARAM
+ GETARG["Method"] = $1
+ GETARG["URI"] = $2
+ GETARG["Version"] = $3
+ i = index($2, "?")
+ # is there a "?" indicating a CGI request?
+ if (i > 0) {
+ split(substr($2, 1, i-1), MENU, "[/:]")
+ split(substr($2, i+1), PARAM, "&")
+ for (i in PARAM) {
+ j = index(PARAM[i], "=")
+ GETARG[substr(PARAM[i], 1, j-1)] = \
+ substr(PARAM[i], j+1)
+ }
+ } else { # there is no "?", no need for splitting PARAMs
+ split($2, MENU, "[/:]")
+ }
+ }
+
+ At first, the function clears all variables used for global storage
+of request parameters. The rest of the function serves the purpose of
+filling the global parameters with the extracted new values. To
+accomplish this, the name of the requested resource is split into parts
+and stored for later evaluation. If the request contains a '?', then
+the request has CGI variables seamlessly appended to the web address.
+Everything in front of the '?' is split up into menu items, and
+everything behind the '?' is a list of 'VARIABLE=VALUE' pairs (separated
+by '&') that also need splitting. This way, CGI variables are isolated
+and stored. This procedure lacks recognition of special characters that
+are transmitted in coded form(1). Here, any optional request header and
+body parts are ignored. We do not need header parameters and the
+request body. However, when refining our approach or working with the
+'POST' and 'PUT' methods, reading the header and body becomes
+inevitable. Header parameters should then be stored in a global array
+as well as the body.
+
+ On each subsequent run through the main loop, one request from a
+browser is received, evaluated, and answered according to the user's
+choice. This can be done by letting the value of the HTTP method guide
+the main loop into execution of the procedure 'HandleGET()', which
+evaluates the user's choice. In this case, we have only one
+hierarchical level of menus, but in the general case, menus are nested.
+The menu choices at each level are separated by '/', just as in file
+names. Notice how simple it is to construct menus of arbitrary depth:
+
+ function HandleGET() {
+ if ( MENU[2] == "human") {
+ Footer = strftime() TopFooter
+ } else if (MENU[2] == "POSIX") {
+ Footer = systime() TopFooter
+ }
+ }
+
+ The disadvantage of this approach is that our server is slow and can
+handle only one request at a time. Its main advantage, however, is that
+the server consists of just one 'gawk' program. No need for installing
+an 'httpd', and no need for static separate HTML files, CGI scripts, or
+'root' privileges. This is rapid prototyping. This program can be
+started on the same host that runs your browser. Then let your browser
+point to Please choose one of the following actions:
\
+ \
+
"
+ TopFooter = ""
+ }
+
+ 'SetUpServer()' is similar to the previous example, except for
+calling another function, 'SetUpEliza()'. This approach can be used to
+implement other kinds of servers. The only changes needed to do so are
+hidden in the functions 'SetUpServer()' and 'HandleGET()'. Perhaps it
+might be necessary to implement other HTTP methods. The 'igawk' program
+that comes with 'gawk' may be useful for this process.
+
+ When extending this example to a complete application, the first
+thing to do is to implement the function 'SetUpServer()' to initialize
+the HTML pages and some variables. These initializations determine the
+way your HTML pages look (colors, titles, menu items, etc.).
+
+ The function 'HandleGET()' is a nested case selection that decides
+which page the user wants to see next. Each nesting level refers to a
+menu level of the GUI. Each case implements a certain action of the
+menu. On the deepest level of case selection, the handler essentially
+knows what the user wants and stores the answer into the variable that
+holds the HTML page contents:
+
+ function HandleGET() {
+ # A real HTTP server would treat some parts of the URI as a file name.
+ # We take parts of the URI as menu choices and go on accordingly.
+ if(MENU[2] == "AboutServer") {
+ Document = "This is not a CGI script.\
+ This is an httpd, an HTML file, and a CGI script all \
+ in one GAWK script. It needs no separate www-server, \
+ no installation, and no root privileges.\
+ \
+
\\
+
JK 14.9.1997
" + } else if (MENU[2] == "AboutELIZA") { + Document = "This is an implementation of the famous ELIZA\ + program by Joseph Weizenbaum. It is written in GAWK and\ + uses an HTML GUI." + } else if (MENU[2] == "StartELIZA") { + gsub(/\+/, " ", GETARG["YouSay"]) + # Here we also have to substitute coded special characters + Document = "" + } + } + + Now we are down to the heart of ELIZA, so you can see how it works. +Initially the user does not say anything; then ELIZA resets its money +counter and asks the user to tell what comes to mind open heartedly. +The subsequent answers are converted to uppercase characters and stored +for later comparison. ELIZA presents the bill when being confronted +with a sentence that contains the phrase "shut up." Otherwise, it looks +for keywords in the sentence, conjugates the rest of the sentence, +remembers the keyword for later use, and finally selects an answer from +the set of possible answers: + + function ElizaSays(YouSay) { + if (YouSay == "") { + cost = 0 + answer = "HI, IM ELIZA, TELL ME YOUR PROBLEM" + } else { + q = toupper(YouSay) + gsub("'", "", q) + if(q == qold) { + answer = "PLEASE DONT REPEAT YOURSELF !" + } else { + if (index(q, "SHUT UP") > 0) { + answer = "WELL, PLEASE PAY YOUR BILL. ITS EXACTLY ... $"\ + int(100*rand()+30+cost/100) + } else { + qold = q + w = "-" # no keyword recognized yet + for (i in k) { # search for keywords + if (index(q, i) > 0) { + w = i + break + } + } + if (w == "-") { # no keyword, take old subject + w = wold + subj = subjold + } else { # find subject + subj = substr(q, index(q, w) + length(w)+1) + wold = w + subjold = subj # remember keyword and subject + } + for (i in conj) + gsub(i, conj[i], q) # conjugation + # from all answers to this keyword, select one randomly + answer = r[indices[int(split(k[w], indices) * rand()) + 1]] + # insert subject into answer + gsub("_", subj, answer) + } + } + } + cost += length(answer) # for later payment : 1 cent per character + return answer + } + + In the long but simple function 'SetUpEliza()', you can see tables +for conjugation, keywords, and answers.(1) The associative array 'k' +contains indices into the array of answers 'r'. To choose an answer, +ELIZA just picks an index randomly: + + function SetUpEliza() { + srand() + wold = "-" + subjold = " " + + # table for conjugation + conj[" ARE " ] = " AM " + conj["WERE " ] = "WAS " + conj[" YOU " ] = " I " + conj["YOUR " ] = "MY " + conj[" IVE " ] =\ + conj[" I HAVE " ] = " YOU HAVE " + conj[" YOUVE " ] =\ + conj[" YOU HAVE "] = " I HAVE " + conj[" IM " ] =\ + conj[" I AM " ] = " YOU ARE " + conj[" YOURE " ] =\ + conj[" YOU ARE " ] = " I AM " + + # table of all answers + r[1] = "DONT YOU BELIEVE THAT I CAN _" + r[2] = "PERHAPS YOU WOULD LIKE TO BE ABLE TO _ ?" + ... + + # table for looking up answers that + # fit to a certain keyword + k["CAN YOU"] = "1 2 3" + k["CAN I"] = "4 5" + k["YOU ARE"] =\ + k["YOURE"] = "6 7 8 9" + ... + } + + Some interesting remarks and details (including the original source +code of ELIZA) are found on Mark Humphrys' home page. Yahoo! also has +a page with a collection of ELIZA-like programs. Many of them are +written in Java, some of them disclosing the Java source code, and a few +even explain how to modify the Java source code. + + ---------- Footnotes ---------- + + (1) The version shown here is abbreviated. The full version comes +with the 'gawk' distribution. + + +File: gawkinet.info, Node: Caveats, Next: Challenges, Prev: Simple Server, Up: Using Networking + +2.11 Network Programming Caveats +================================ + +By now it should be clear that debugging a networked application is more +complicated than debugging a single-process single-hosted application. +The behavior of a networked application sometimes looks noncausal +because it is not reproducible in a strong sense. Whether a network +application works or not sometimes depends on the following: + + * How crowded the underlying network is + + * If the party at the other end is running or not + + * The state of the party at the other end + + The most difficult problems for a beginner arise from the hidden +states of the underlying network. After closing a TCP connection, it's +often necessary to wait a short while before reopening the connection. +Even more difficult is the establishment of a connection that previously +ended with a "broken pipe." Those connections have to "time out" for a +minute or so before they can reopen. Check this with the command +'netstat -a', which provides a list of still "active" connections. + + +File: gawkinet.info, Node: Challenges, Prev: Caveats, Up: Using Networking + +2.12 Where To Go From Here +========================== + +Now, you have learned enough to build your own application. You could, +for example, take part in the Loebner Contest to win $100,000. The +Loebner Prize is the first formal instantiation of a Turing Test. Hugh +Loebner agreed with The Cambridge Center for Behavioral Studies to +underwrite a contest designed to implement the Turing Test. Dr. Loebner +pledged a Grand Prize of $100,000 for the first computer whose responses +were indistinguishable from a human's. Each year an annual prize of +$2000 and a bronze medal is awarded to the _most_ human computer. The +winner of the annual contest is the best entry relative to other entries +that year, irrespective of how good it is in an absolute sense. Here is +an example of a conversation with the winning program of 1997: + + (c)1997 Cambridge Center For Behavioral Studies all rights reserved [CONVERSE] + [Intelligent Research Ltd.] Start at: [1997/04/29 08:59:40] + PROGRAM[10:39:20]Hi, my name is Catherine, what's yours? + JUDGE02[10:39:36]My name is Nathan. + PROGRAM[10:39:37]Well, it's nice to meet you, Nathan. + PROGRAM[10:39:45]Did you see that story on CNN last night about the lesbian + PROGRAM[10:40:03]couple who came out at a White House party on Sunday? + JUDGE02[10:40:45]No. I'm sorry I missed that. How did the Prez take it? + PROGRAM[10:40:47]Ellen Degeneres was one of them - she was kissing her lover + PROGRAM[10:41:08]in front of Bill Clinton. Do you think he was very + PROGRAM[10:41:21]embarrassed? + JUDGE02[10:41:37]You tell me. I didn't see it. + PROGRAM[10:41:38]Are you still a Friend of Bill Clinton? + JUDGE02[10:42:22]Yes. I would like to talk about something else. Do you know anything about sculpture. + PROGRAM[10:42:24]Well, I suppose he's doing his best like most of us, but he + PROGRAM[10:42:35]does seem to attract an UNUSUAL amount of bad publicity, + PROGRAM[10:42:51]wouldnt you say--can it all be bad luck? + JUDGE02[10:43:20]I asked you if you knew anything about sculpture. + PROGRAM[10:43:21]OK, but what happens now--does it all drift on, with + PROGRAM[10:43:36]everyone waiting to see how much his friends have said about + PROGRAM[10:43:47]him under threat of lots and lots of jail-or will something + PROGRAM[10:44:01]dramatic actually happen? + JUDGE02[10:44:19]Do you know what sculpture is? + PROGRAM[10:44:20]Well, youre more a fan of his than I am I guess---though I + PROGRAM[10:44:34]cant SWEAR what Id have done in that locked hotel room, I + PROGRAM[10:44:51]must say. + JUDGE02[10:45:26]Have you ever been to the Salmagundi Club? + PROGRAM[10:45:29]Never. to go back to the original discussion Time to get + PROGRAM[10:45:43]off this one I think and onto something more down to earth! + JUDGE02[10:46:20]What is more down to earth than art? + PROGRAM[10:46:21]I don't know what -- to be honest. - + PROGRAM[10:46:30]I suppose it depends on where you're coming from, but as the + PROGRAM[10:46:46]song goes in My Fair Lady, "Why can't a woman be more like a + PROGRAM[10:47:03]man? " + JUDGE02[10:47:52]I liked that song but I prefer "Why can't children be more like we are" + JUDGE02[10:48:10]from another play the name of which I cannot remember. + PROGRAM[10:48:12]What, if anything, do you enjoy about being a man? + JUDGE02[10:49:01]I would enjoy all aspects of life no matter what my gender. + PROGRAM[10:49:02]Do you think of yourself as being attractive? + + This program insists on always speaking about the same story around +Bill Clinton. You see, even a program with a rather narrow mind can +behave so much like a human being that it can win this prize. It is +quite common to let these programs talk to each other via network +connections. But during the competition itself, the program and its +computer have to be present at the place the competition is held. We +all would love to see a 'gawk' program win in such an event. Maybe it +is up to you to accomplish this? + + Some other ideas for useful networked applications: + * Read the file 'doc/awkforai.txt' in the 'gawk' distribution. It + was written by Ronald P. Loui (at the time, Associate Professor of + Computer Science, at Washington University in St. Louis, +" i " | " \ + "" config[i] " |